430 research outputs found

    Enhancement of parametric pumping due to Andreev reflection

    Get PDF
    We report properties of parametric electron pumping in the presence of a superconducting lead. Due to a constructive interference between the direct reflection and the multiple Andreev reflection, the pumped current is greatly enhanced. For both quantum point contacts and double barrier structures at resonance, we obtain exact solutions in the weak pumping regime showing that IpNS=4IpNI_p^{NS} = 4 I_p^N, which should be compared with the result of conductance GNS=2GNG_{NS} = 2G_N. Numerical results are also provided for the strong pumping regime showing interesting Andreev assisted pumping behaviour

    Electron transport through Al-ZnO-Al: an {\it ab initio} calculation

    Get PDF
    The electron transport properties of ZnO nano-wires coupled by two aluminium electrodes were studied by {\it ab initio} method based on non-equilibrium Green's function approach and density functional theory. A clearly rectifying current-voltage characteristics was observed. It was found that the contact interfaces between Al-O and Al-Zn play important roles in the charge transport at low bias voltage and give very asymmetric I-V characteristics. When the bias voltage increases, the negative differential resistance occurs at negative bias voltage. The charge accumulation was calculated and its behavior was found to be well correlated with the I-V characteristics. We have also calculated the electrochemical capacitance which exhibits three plateaus at different bias voltages which may have potential device application.Comment: 10 pages, 6 figure

    Dissipative dynamics in a tunable Rabi dimer with periodic harmonic driving

    Full text link
    Recent progress on qubit manipulation allows application of periodic driving signals on qubits. In this study, a harmonic driving field is added to a Rabi dimer to engineer photon and qubit dynamics in a circuit quantum electrodynamics device. To model environmental effects, qubits in the Rabi dimer are coupled to a phonon bath with a sub-Ohmic spectral density. A non-perturbative treatment, the Dirac-Frenkel time-dependent variational principle together with the multiple Davydov D2_2 {\it Ansatz} is employed to explore the dynamical behavior of the tunable Rabi dimer. In the absence of the phonon bath, the amplitude damping of the photon number oscillation is greatly suppressed by the driving field, and photons can be created thanks to resonances between the periodic driving field and the photon frequency. In the presence of the phonon bath, one still can change the photon numbers in two resonators, and indirectly alter the photon imbalance in the Rabi dimer by directly varying the driving signal in one qubit. It is shown that qubit states can be manipulated directly by the harmonic driving. The environment is found to strengthen the interqubit asymmetry induced by the external driving, opening up a new venue to engineer the qubit states

    Engineering Photon Delocalization in a Rabi Dimer with a Dissipative Bath

    Full text link
    A Rabi dimer is used to model a recently reported circuit quantum electrodynamics system composed of two coupled transmission-line resonators with each coupled to one qubit. In this study, a phonon bath is adopted to mimic the multimode micromechanical resonators and is coupled to the qubits in the Rabi dimer. The dynamical behavior of the composite system is studied by the Dirac-Frenkel time-dependent variational principle combined with the multiple Davydov D2_{2} ans\"{a}tze. Initially all the photons are pumped into the left resonator, and the two qubits are in the down state coupled with the phonon vacuum. In the strong qubit-photon coupling regime, the photon dynamics can be engineered by tuning the qubit-bath coupling strength α\alpha and photon delocalization is achieved by increasing α\alpha. In the absence of dissipation, photons are localized in the initial resonator. Nevertheless, with moderate qubit-bath coupling, photons are delocalized with quasiequilibration of the photon population in two resonators at long times. In this case, high frequency bath modes are activated by interacting with depolarized qubits. For strong dissipation, photon delocalization is achieved via frequent photon-hopping within two resonators and the qubits are suppressed in their initial down state.Comment: 11 pages, 11 figure

    Universal quantized spin-Hall conductance fluctuation in graphene

    Full text link
    We report a theoretical investigation of quantized spin-Hall conductance fluctuation of graphene devices in the diffusive regime. Two graphene models that exhibit quantized spin-Hall effect (QSHE) are analyzed. Model-I is with unitary symmetry under an external magnetic field B0B\ne 0 but with zero spin-orbit interaction, tSO=0t_{SO}=0. Model-II is with symplectic symmetry where B=0 but tSO0t_{SO} \ne 0. Extensive numerical calculations indicate that the two models have exactly the same universal QSHE conductance fluctuation value 0.285e/4π0.285 e/4\pi regardless of the symmetry. Qualitatively different from the conventional charge and spin universal conductance distributions, in the presence of edge states the spin-Hall conductance shows an one-sided log-normal distribution rather than a Gaussian distribution. Our results strongly suggest that the quantized spin-Hall conductance fluctuation belongs to a new universality class

    Nonlinear transport theory for hybrid normal-superconducting devices

    Get PDF
    We report a theory for analyzing nonlinear DC transport properties of mesoscopic or nanoscopic normal-superconducting (N-S) systems. Special attention was paid such that our theory satisfies gauge invariance. At the linear transport regime and the sub-gap region where the familiar scattering matrix theory has been developed, we provide confirmation that our theory and the scattering matrix theory are equivalent. At the nonlinear regime, however, our theory allows the investigation of a number of important problems: for N-S hybrid systems we have derived the general nonlinear current-voltage characteristics in terms of the scattering Green's function, the second order nonlinear conductance at the weakly nonlinear regime, and nonequilibrium charge pile-up in the device which defines the electrochemical capacitance coefficients

    Shot noise of spin current and spin transfer torque

    Get PDF
    We report the theoretical investigation of noise spectrum of spin current and spin transfer torque for non-colinear spin polarized transport in a spin-valve device which consists of normal scattering region connected by two ferromagnetic electrodes. Our theory was developed using non-equilibrium Green's function method and general non-linear SσVS^\sigma-V and SτVS^\tau-V relations were derived as a function of angle θ\theta between magnetization of two leads. We have applied our theory to a quantum dot system with a resonant level coupled with two ferromagnetic electrodes. It was found that for the MNM system, the auto-correlation of spin current is enough to characterize the fluctuation of spin current. For a system with three ferromagnetic layers, however, both auto-correlation and cross-correlation of spin current are needed to characterize the noise spectrum of spin current. Furthermore, the spin transfer torque and the torque noise were studied for the MNM system. For a quantum dot with a resonant level, the derivative of spin torque with respect to bias voltage is proportional to sinθ\sin\theta when the system is far away from the resonance. When the system is near the resonance, the spin transfer torque becomes non-sinusoidal function of θ\theta. The derivative of noise spectrum of spin transfer torque with respect to the bias voltage NτN_\tau behaves differently when the system is near or far away from the resonance. Specifically, the differential shot noise of spin transfer torque NτN_\tau is a concave function of θ\theta near the resonance while it becomes convex function of θ\theta far away from resonance. For certain bias voltages, the period Nτ(θ)N_\tau(\theta) becomes π\pi instead of 2π2\pi. For small θ\theta, it was found that the differential shot noise of spin transfer torque is very sensitive to the bias voltage and the other system parameters.Comment: 15pages, 6figure
    corecore